Follow
Roberto Confalonieri
Title
Cited by
Cited by
Year
A historical perspective of explainable Artificial Intelligence
R Confalonieri, L Coba, B Wagner, TR Besold
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 11 (1 …, 2021
2152021
A computational framework for conceptual blending
M Eppe, E Maclean, R Confalonieri, O Kutz, M Schorlemmer, E Plaza, ...
Artificial Intelligence 256, 105-129, 2018
972018
Using ontologies to enhance human understandability of global post-hoc explanations of black-box models
R Confalonieri, T Weyde, TR Besold, FM del Prado Martín
Artificial Intelligence 296, 103471, 2021
742021
Repairing ontologies via axiom weakening
N Troquard, R Confalonieri, P Galliani, R Penaloza, D Porello, O Kutz
Proceedings of the AAAI Conference on Artificial Intelligence 32 (1), 2018
662018
Trepan reloaded: A knowledge-driven approach to explaining artificial neural networks
R Confalonieri, T Weyde, TR Besold, F Moscoso del Prado Martín
IOS Press 325, 2457-2464, 2020
62*2020
Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence
S Ali, T Abuhmed, S El-Sappagh, K Muhammad, JM Alonso-Moral, ...
Information Fusion 99, 101805, 2023
602023
Computational invention of cadences and chord progressions by conceptual chord-blending
M Eppe, R Confalonieri, E Maclean, M Kaliakatsos, E Cambouropoulos, ...
Proceedings of the Twenty-Fourth International Joint Conference on …, 2015
582015
Upward refinement operators for conceptual blending in the description logic
R Confalonieri, M Eppe, M Schorlemmer, O Kutz, R Penaloza, E Plaza
Annals of Mathematics and Artificial Intelligence 82, 69-99, 2018
47*2018
Using argumentation to evaluate concept blends in combinatorial creativity
R Confalonieri, J Corneli, A Pease, E Plaza, M Schorlemmer
Brigham Young University, 2015
282015
Concept Invention
R Confalonieri, A Pease, M Schorlemmer, TR Besold, O Kutz, E Maclean, ...
Springer Nature, 2018
262018
Two approaches to ontology aggregation based on axiom weakening
D Porello, N Troquard, O Kutz, R Penaloza, R Confalonieri, P Galliani
232018
ASP, amalgamation, and the conceptual blending workflow
M Eppe, E Maclean, R Confalonieri, O Kutz, M Schorlemmer, E Plaza
Logic Programming and Nonmonotonic Reasoning: 13th International Conference …, 2015
232015
What makes a good explanation? Cognitive dimensions of explaining intelligent machines.
R Confalonieri, TR Besold, T Weyde, K Creel, T Lombrozo, ST Mueller, ...
CogSci, 25-26, 2019
212019
Possibilistic semantics for logic programs with ordered disjunction
R Confalonieri, JC Nieves, M Osorio, J Vázquez-Salceda
International Symposium on Foundations of Information and Knowledge Systems …, 2010
212010
Engineering multiuser museum interactives for shared cultural experiences
R Confalonieri, M Yee-King, K Hazelden, D de Jonge, N Osman, C Sierra, ...
Engineering Applications of Artificial Intelligence 46, 180-195, 2015
20*2015
A possibilistic argumentation decision making framework with default reasoning
JC Nieves, R Confalonieri
Fundamenta Informaticae 113 (1), 41-61, 2011
192011
Ontology-based tourism for all recommender and information retrieval system for interactive community displays
K Alonso, M Zorrilla, H Iñan, M Palau, R Confalonieri, J Vázquez-Salceda, ...
2012 8th International Conference on Information Science and Digital Content …, 2012
182012
Intelligent contracting agents language
S Panagiotidi, J Vázquez-Salceda, S Alvarez-Napagao, ...
Behaviour Regulation in MAS, AISB, 49-55, 2008
182008
The Yoneda path to the Buddhist monk blend
M Schorlemmer, R Confalonieri, E Plaza
162016
An argument-based creative assistant for harmonic blending
M Kaliakatsos-Papakostas, R Confalonieri, J Corneli, A Zacharakis, ...
arXiv preprint arXiv:1603.01770, 2016
162016
The system can't perform the operation now. Try again later.
Articles 1–20