Follow
Dieuwke Hupkes
Title
Cited by
Cited by
Year
The llama 3 herd of models
A Dubey, A Jauhri, A Pandey, A Kadian, A Al-Dahle, A Letman, A Mathur, ...
arXiv preprint arXiv:2407.21783, 2024
13172024
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models
A Srivastava, A Rastogi, A Rao, AAM Shoeb, A Abid, A Fisch, AR Brown, ...
arXiv preprint arXiv:2206.04615, 2022
11772022
Compositionality decomposed: How do neural networks generalise?
D Hupkes, V Dankers, M Mul, E Bruni
Journal of Artificial Intelligence Research 67, 757-795, 2020
376*2020
Visualisation and'diagnostic classifiers' reveal how recurrent and recursive neural networks process hierarchical structure
D Hupkes, S Veldhoen, W Zuidema
Journal of Artificial Intelligence Research 61, 907-926, 2018
3172018
Masked language modeling and the distributional hypothesis: Order word matters pre-training for little
K Sinha, R Jia, D Hupkes, J Pineau, A Williams, D Kiela
arXiv preprint arXiv:2104.06644, 2021
2512021
The emergence of number and syntax units in LSTM language models
Y Lakretz, G Kruszewski, T Desbordes, D Hupkes, S Dehaene, M Baroni
arXiv preprint arXiv:1903.07435, 2019
2032019
Under the hood: Using diagnostic classifiers to investigate and improve how language models track agreement information
M Giulianelli
arXiv preprint arXiv:1808.08079, 2018
1942018
A taxonomy and review of generalization research in NLP
D Hupkes, M Giulianelli, V Dankers, M Artetxe, Y Elazar, T Pimentel, ...
Nature Machine Intelligence 5 (10), 1161-1174, 2023
112*2023
Mechanisms for handling nested dependencies in neural-network language models and humans
Y Lakretz, D Hupkes, A Vergallito, M Marelli, M Baroni, S Dehaene
Cognition 213, 104699, 2021
852021
The paradox of the compositionality of natural language: A neural machine translation case study
V Dankers, E Bruni, D Hupkes
arXiv preprint arXiv:2108.05885, 2021
762021
The llama 3 herd of models, 2024
A Dubey, A Jauhri, A Pandey, A Kadian, A Al-Dahle, A Letman, A Mathur, ...
URL https://arxiv. org/abs/2407.21783 2407, 21783, 0
75
Do language models understand anything? On the ability of LSTMs to understand negative polarity items
J Jumelet, D Hupkes
arXiv preprint arXiv:1808.10627, 2018
672018
Diagnostic Classifiers Revealing how Neural Networks Process Hierarchical Structure.
S Veldhoen, D Hupkes, WH Zuidema
CoCo@ NIPS, 69-77, 2016
552016
Analysing neural language models: Contextual decomposition reveals default reasoning in number and gender assignment
J Jumelet, W Zuidema, D Hupkes
arXiv preprint arXiv:1909.08975, 2019
472019
Co-evolution of language and agents in referential games
G Dagan, D Hupkes, E Bruni
arXiv preprint arXiv:2001.03361, 2020
432020
Location attention for extrapolation to longer sequences
Y Dubois, G Dagan, D Hupkes, E Bruni
arXiv preprint arXiv:1911.03872, 2019
382019
Learning compositionally through attentive guidance
D Hupkes, A Singh, K Korrel, G Kruszewski, E Bruni
arXiv preprint arXiv:1805.09657, 2018
332018
Transcoding compositionally: Using attention to find more generalizable solutions
K Korrel, D Hupkes, V Dankers, E Bruni
arXiv preprint arXiv:1906.01234, 2019
322019
How bpe affects memorization in transformers
E Kharitonov, M Baroni, D Hupkes
arXiv preprint arXiv:2110.02782, 2021
302021
Language models use monotonicity to assess NPI licensing
J Jumelet, M Denić, J Szymanik, D Hupkes, S Steinert-Threlkeld
arXiv preprint arXiv:2105.13818, 2021
302021
The system can't perform the operation now. Try again later.
Articles 1–20