Seguir
Luís Miguel Matos
Luís Miguel Matos
Outros nomesLuís Miguel da Rocha de Matos, Luís Matos
Assistant Professor, ALGORITMI/Dep. Information Systems, University of Minho
Email confirmado em dsi.uminho.pt - Página inicial
Título
Citado por
Citado por
Ano
Forecasting store foot traffic using facial recognition, time series and support vector machines
P Cortez, LM Matos, PJ Pereira, N Santos, D Duque
International Joint Conference SOCO’16-CISIS’16-ICEUTE’16, 267-276, 2016
182016
Deep dense and convolutional autoencoders for machine acoustic anomaly detection
G Coelho, P Pereira, L Matos, A Ribeiro, EC Nunes, A Ferreira, P Cortez, ...
IFIP International Conference on Artificial Intelligence Applications and …, 2021
17*2021
Using deep learning for mobile marketing user conversion prediction
LM Matos, P Cortez, R Mendes, A Moreau
2019 International Joint Conference on Neural Networks (IJCNN), 1-8, 2019
152019
A comparison of data-driven approaches for mobile marketing user conversion prediction
LM Matos, P Cortez, R Mendes, A Moreau
2018 International Conference on Intelligent Systems (IS), 140-146, 2018
122018
Using deep learning for ordinal classification of mobile marketing user conversion
LM Matos, P Cortez, RC Mendes, A Moreau
International Conference on Intelligent Data Engineering and Automated …, 2019
62019
A categorical clustering of publishers for mobile performance marketing
S Silva, P Cortez, R Mendes, PJ Pereira, LM Matos, L Garcia
The 13th International Conference on Soft Computing Models in Industrial and …, 2018
62018
A comparison of anomaly detection methods for industrial screw tightening
D Ribeiro, LM Matos, P Cortez, G Moreira, A Pilastri
International Conference on Computational Science and Its Applications, 485-500, 2021
52021
Isolation Forests and Deep Autoencoders for Industrial Screw Tightening Anomaly Detection
D Ribeiro, LM Matos, G Moreira, A Pilastri, P Cortez
Computers 11 (4), 54, 2022
32022
A comparison of machine learning approaches for predicting in-car display production quality
LM Matos, A Domingues, G Moreira, P Cortez, A Pilastri
International Conference on Intelligent Data Engineering and Automated …, 2021
32021
Using deep autoencoders for in-vehicle audio anomaly detection
PJ Pereira, G Coelho, A Ribeiro, LM Matos, EC Nunes, A Ferreira, ...
Procedia Computer Science 192, 298-307, 2021
32021
Categorical Attribute traNsformation Environment (CANE): A python module for categorical to numeric data preprocessing
LM Matos, J Azevedo, A Matta, A Pilastri, P Cortez, R Mendes
Software Impacts 13, 100359, 2022
22022
A Deep Learning-Based Decision Support System for Mobile Performance Marketing
LM Matos, P Cortez, R Mendes, A Moreau
International Journal of Information Technology & Decision Making, 1-25, 2022
12022
A deep learning approach to prevent problematic movements of industrial workers based on inertial sensors
C Fernandes, LM Matos, D Folgado, ML Nunes, JR Pereira, A Pilastri, ...
2022 International Joint Conference on Neural Networks (IJCNN), 01-08, 2022
12022
An intelligent decision support system for road freight transport
HS Carvalho, A Pilastri, A Matta, LM Matos, R Novais, P Cortez
International Conference on Intelligent Data Engineering and Automated …, 2022
12022
An empirical study on anomaly detection algorithms for extremely imbalanced datasets
G Fontes, LM Matos, A Matta, A Pilastri, P Cortez
IFIP International Conference on Artificial Intelligence Applications and …, 2022
12022
A Machine Learning Approach for Spare Parts Lifetime Estimation.
L Macedo, LM Matos, P Cortez, A Domingues, G Moreira, AL Pilastri
ICAART (3), 765-772, 2022
12022
Deep autoencoders for acoustic anomaly detection: experiments with working machine and in-vehicle audio
G Coelho, LM Matos, PJ Pereira, A Ferreira, A Pilastri, P Cortez
Neural Computing and Applications, 1-15, 2022
2022
A Sequence to Sequence Long Short-Term Memory Network for Footwear Sales Forecasting
L Santos, LM Matos, L Ferreira, P Alves, M Viana, A Pilastri, P Cortez
International Conference on Intelligent Data Engineering and Automated …, 2022
2022
Predicting Yarn Breaks in Textile Fabrics: A Machine Learning Approach
J Azevedo, R Ribeiro, LM Matos, R Sousa, JP Silva, A Pilastri, P Cortez
Procedia Computer Science 207, 2301-2310, 2022
2022
An intelligent decision support system for mobile performance marketing
LM Matos
Minho University, 2021
2021
O sistema não pode efectuar a operação agora. Tente mais tarde.
Artigos 1–20