Timothy Wencewicz
Timothy Wencewicz
Associate Professor of Chemistry, Washington University in St. Louis
Verified email at - Homepage
Cited by
Cited by
Prospects for new antibiotics: a molecule-centered perspective
CT Walsh, TA Wencewicz
The Journal of antibiotics 67 (1), 7-22, 2014
Flavoenzymes: versatile catalysts in biosynthetic pathways
CT Walsh, TA Wencewicz
Natural product reports 30 (1), 175-200, 2013
Antibiotics: challenges, mechanisms, opportunities
C Walsh, T Wencewicz
John Wiley & Sons, 2020
Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin “Trojan Horse …
TA Wencewicz, U Möllmann, TE Long, MJ Miller
Biometals 22, 633-648, 2009
The tetracycline destructases: a novel family of tetracycline-inactivating enzymes
KJ Forsberg, S Patel, TA Wencewicz, G Dantas
Chemistry & biology 22 (7), 888-897, 2015
Trihydroxamate siderophore–fluoroquinolone conjugates are selective sideromycin antibiotics that target Staphylococcus aureus
TA Wencewicz, TE Long, U Möllmann, MJ Miller
Bioconjugate chemistry 24 (3), 473-486, 2013
Tetracycline-inactivating enzymes
JL Markley, TA Wencewicz
Frontiers in microbiology 9, 1058, 2018
Biscatecholate–monohydroxamate mixed ligand siderophore–carbacephalosporin conjugates are selective sideromycin antibiotics that target Acinetobacter baumannii
TA Wencewicz, MJ Miller
Journal of medicinal chemistry 56 (10), 4044-4052, 2013
Crossroads of antibiotic resistance and biosynthesis
TA Wencewicz
Journal of molecular biology 431 (18), 3370-3399, 2019
Tetracycline-inactivating enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum tetracycline resistance
AJ Gasparrini, JL Markley, H Kumar, B Wang, L Fang, S Irum, CT Symister, ...
Communications biology 3 (1), 241, 2020
Plasticity, dynamics, and inhibition of emerging tetracycline resistance enzymes
J Park, AJ Gasparrini, MR Reck, CT Symister, JL Elliott, JP Vogel, ...
Nature chemical biology 13 (7), 730-736, 2017
β-Lactone formation during product release from a nonribosomal peptide synthetase
JE Schaffer, MR Reck, NK Prasad, TA Wencewicz
Nature Chemical Biology 13 (7), 737-744, 2017
New antibiotics from Nature’s chemical inventory
TA Wencewicz
Bioorganic & medicinal chemistry 24 (24), 6227-6252, 2016
Sideromycins as pathogen-targeted antibiotics
TA Wencewicz, MJ Miller
Antibacterials: Volume II, 151-183, 2018
Comprehensive spectroscopic, steady state, and transient kinetic studies of a representative siderophore-associated flavin monooxygenase
JA Mayfield, RE Frederick, BR Streit, TA Wencewicz, DP Ballou, ...
Journal of Biological Chemistry 285 (40), 30375-30388, 2010
Acinetobactin Isomerization Enables Adaptive Iron Acquisition in Acinetobacter baumannii through pH-Triggered Siderophore Swapping
JA Shapiro, TA Wencewicz
ACS infectious diseases 2 (2), 157-168, 2016
Ceric ammonium nitrate catalyzed oxidation of sulfides to sulfoxides
MH Ali, D Kriedelbaugh, T Wencewicz
Synthesis 2007 (22), 3507-3511, 2007
N–O Chemistry for Antibiotics: Discovery of N-Alkyl-N-(pyridin-2-yl)hydroxylamine Scaffolds as Selective Antibacterial Agents Using Nitroso Diels–Alder and Ene …
TA Wencewicz, B Yang, JR Rudloff, AG Oliver, MJ Miller
Journal of medicinal chemistry 54 (19), 6843-6858, 2011
The structural basis of N-acyl-α-amino-β-lactone formation catalyzed by a nonribosomal peptide synthetase
DF Kreitler, EM Gemmell, JE Schaffer, TA Wencewicz, AM Gulick
Nature communications 10 (1), 3432, 2019
Fimsbactin and Acinetobactin Compete for the Periplasmic Siderophore Binding Protein BauB in Pathogenic Acinetobacter baumannii
TJ Bohac, L Fang, DE Giblin, TA Wencewicz
ACS chemical biology 14 (4), 674-687, 2019
The system can't perform the operation now. Try again later.
Articles 1–20