Timothy Wencewicz
Timothy Wencewicz
Associate Professor of Chemistry, Washington University in St. Louis
Verified email at - Homepage
Cited by
Cited by
Prospects for new antibiotics: a molecule-centered perspective
CT Walsh, TA Wencewicz
The Journal of antibiotics 67 (1), 7-22, 2014
Flavoenzymes: versatile catalysts in biosynthetic pathways
CT Walsh, TA Wencewicz
Natural product reports 30 (1), 175-200, 2013
Antibiotics: challenges, mechanisms, opportunities
C Walsh, T Wencewicz
John Wiley & Sons, 2020
The tetracycline destructases: a novel family of tetracycline-inactivating enzymes
KJ Forsberg, S Patel, TA Wencewicz, G Dantas
Chemistry & biology 22 (7), 888-897, 2015
Tetracycline-inactivating enzymes
JL Markley, TA Wencewicz
Frontiers in microbiology 9, 370057, 2018
Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin “Trojan Horse …
TA Wencewicz, U Möllmann, TE Long, MJ Miller
Biometals 22, 633-648, 2009
Crossroads of antibiotic resistance and biosynthesis
TA Wencewicz
Journal of molecular biology 431 (18), 3370-3399, 2019
Trihydroxamate siderophore–fluoroquinolone conjugates are selective sideromycin antibiotics that target Staphylococcus aureus
TA Wencewicz, TE Long, U Möllmann, MJ Miller
Bioconjugate chemistry 24 (3), 473-486, 2013
Biscatecholate–monohydroxamate mixed ligand siderophore–carbacephalosporin conjugates are selective sideromycin antibiotics that target Acinetobacter baumannii
TA Wencewicz, MJ Miller
Journal of medicinal chemistry 56 (10), 4044-4052, 2013
Tetracycline-inactivating enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum tetracycline resistance
AJ Gasparrini, JL Markley, H Kumar, B Wang, L Fang, S Irum, CT Symister, ...
Communications biology 3 (1), 241, 2020
Plasticity, dynamics, and inhibition of emerging tetracycline resistance enzymes
J Park, AJ Gasparrini, MR Reck, CT Symister, JL Elliott, JP Vogel, ...
Nature chemical biology 13 (7), 730-736, 2017
β-Lactone formation during product release from a nonribosomal peptide synthetase
JE Schaffer, MR Reck, NK Prasad, TA Wencewicz
Nature Chemical Biology 13 (7), 737-744, 2017
New antibiotics from Nature’s chemical inventory
TA Wencewicz
Bioorganic & medicinal chemistry 24 (24), 6227-6252, 2016
Sideromycins as pathogen-targeted antibiotics
TA Wencewicz, MJ Miller
Antibacterials: Volume II, 151-183, 2018
Comprehensive spectroscopic, steady state, and transient kinetic studies of a representative siderophore-associated flavin monooxygenase
JA Mayfield, RE Frederick, BR Streit, TA Wencewicz, DP Ballou, ...
Journal of biological chemistry 285 (40), 30375-30388, 2010
Acinetobactin Isomerization Enables Adaptive Iron Acquisition in Acinetobacter baumannii through pH-Triggered Siderophore Swapping
JA Shapiro, TA Wencewicz
ACS infectious diseases 2 (2), 157-168, 2016
The structural basis of N-acyl-α-amino-β-lactone formation catalyzed by a nonribosomal peptide synthetase
DF Kreitler, EM Gemmell, JE Schaffer, TA Wencewicz, AM Gulick
Nature communications 10 (1), 3432, 2019
Ceric ammonium nitrate catalyzed oxidation of sulfides to sulfoxides
MH Ali, D Kriedelbaugh, T Wencewicz
Synthesis 2007 (22), 3507-3511, 2007
N–O Chemistry for Antibiotics: Discovery of N-Alkyl-N-(pyridin-2-yl)hydroxylamine Scaffolds as Selective Antibacterial Agents Using Nitroso Diels–Alder and Ene …
TA Wencewicz, B Yang, JR Rudloff, AG Oliver, MJ Miller
Journal of medicinal chemistry 54 (19), 6843-6858, 2011
Fimsbactin and Acinetobactin Compete for the Periplasmic Siderophore Binding Protein BauB in Pathogenic Acinetobacter baumannii
TJ Bohac, L Fang, DE Giblin, TA Wencewicz
ACS chemical biology 14 (4), 674-687, 2019
The system can't perform the operation now. Try again later.
Articles 1–20