Convolution quadrature time discretization of fractional diffusion-wave equations E Cuesta, C Lubich, C Palencia Mathematics of Computation 75 (254), 673-696, 2006 | 280 | 2006 |

Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations E Cuesta Conference Publications 2007 (Special), 277-285, 2007 | 173 | 2007 |

Image structure preserving denoising using generalized fractional time integrals E Cuesta, M Kirane, SA Malik Signal Processing 92 (2), 553-563, 2012 | 88 | 2012 |

A numerical method for an integro-differential equation with memory in Banach spaces: Qualitative properties E Cuesta, C Palencia SIAM Journal on Numerical Analysis 41 (4), 1232-1241, 2003 | 73 | 2003 |

Image processing by means of a linear integro-differential equation E Cuesta-Montero, J Finat Proceedings of 3rd IASTED International Conference on Visualization, Imaging …, 2003 | 67 | 2003 |

A fractional trapezoidal rule for integro-differential equations of fractional order in Banach spaces E Cuesta, C Palencia Applied numerical mathematics 45 (2-3), 139-159, 2003 | 59 | 2003 |

Runge–Kutta convolution quadrature methods for well-posed equations with memory MP Calvo, E Cuesta, C Palencia Numerische Mathematik 107, 589-614, 2007 | 49 | 2007 |

Improving satellite image classification by using fractional type convolution filtering C Quintano, E Cuesta International Journal of Applied Earth Observation and Geoinformation 12 (4 …, 2010 | 22 | 2010 |

Some advances on image processing by means of fractional calculus E Cuesta Nonlinear Science and complexity, 265-271, 2011 | 18 | 2011 |

A posteriori error estimates and maximal regularity for approximations of fully nonlinear parabolic problems in Banach spaces E Cuesta, C Makridakis Numerische Mathematik 110 (3), 257-275, 2008 | 13 | 2008 |

Cross-diffusion systems for image processing: II. The nonlinear case A Araújo, S Barbeiro, E Cuesta, A Durán Journal of Mathematical Imaging and Vision 58, 427-446, 2017 | 10 | 2017 |

Cross-diffusion systems for image processing: I. The linear case A Araújo, S Barbeiro, E Cuesta, A Durán Journal of Mathematical Imaging and Vision 58, 447-467, 2017 | 10 | 2017 |

Well-posedness, regularity, and asymptotic behavior of continuous and discrete solutions of linear fractional integro-differential equations with time-dependent order E Cuesta, R Ponce Texas State University, Department of Mathematics, 2018 | 7 | 2018 |

Métodos Lineales Multipaso para Ecuaciones Integro–Diferenciales de Orden Fraccionario en Espacios de Banach E Cuesta Ph. D. Thesis, Universidad de Valladolid, Valladolid, Spain, 2001 | 6 | 2001 |

Linear fractional-based filter as a pre-classifier to map burned areas in Mediterranean countries E Cuesta, C Quintano International Journal of Remote Sensing 36 (13), 3293-3316, 2015 | 4 | 2015 |

A variable step size numerical method based on fractional type quadratures for linear integro-differential equations E Cuesta Advances in Engineering Software 41 (1), 64-69, 2010 | 4 | 2010 |

Hölder regularity for abstract semi-linear fractional differential equations in Banach spaces E Cuesta, R Ponce Computers & Mathematics with Applications 85, 57-68, 2021 | 3 | 2021 |

A discrete cross-diffusion model for image restoration A Araújo, S Barbeiro, E Cuesta, Á Durán Progress in Industrial Mathematics at ECMI 2016 19, 401-408, 2017 | 3 | 2017 |

A Criticism on the Bologna’s Learning Strategies E Cuesta World Summit on Knowledge Society, 432-436, 2010 | 3 | 2010 |

Anisotropic like approach to image denoising by means of generalized fractional time integrals E Cuesta, M Kirane, SA Malik preprint: http://hal. archives-ouvertes. fr/hal-00437341/fr, 0 | 3 | |