Seguir
Nathan Hodas
Nathan Hodas
Bungie
Email confirmado em bungie.com
Título
Citado por
Citado por
Ano
Deep learning for computational chemistry
GB Goh, NO Hodas, A Vishnu
Journal of computational chemistry 38 (16), 1291-1307, 2017
8692017
Learning deep neural network representations for Koopman operators of nonlinear dynamical systems
E Yeung, S Kundu, N Hodas
2019 American Control Conference (ACC), 4832-4839, 2019
4612019
Separating facts from fiction: Linguistic models to classify suspicious and trusted news posts on twitter
S Volkova, K Shaffer, JY Jang, N Hodas
Proceedings of the 55th Annual Meeting of the Association for Computational …, 2017
4272017
The Simple Rules of Social Contagion
N Hodas, K Lerman
Scientific Reports 4 (4343), 2014
3462014
Chemception: a deep neural network with minimal chemistry knowledge matches the performance of expert-developed QSAR/QSPR models
GB Goh, C Siegel, A Vishnu, NO Hodas, N Baker
arXiv preprint arXiv:1706.06689, 2017
2602017
Few-shot learning with metric-agnostic conditional embeddings
N Hilliard, L Phillips, S Howland, A Yankov, CD Corley, NO Hodas
arXiv preprint arXiv:1802.04376, 2018
2042018
How limited visibility and divided attention constrain social contagion
NO Hodas
SocialCom 2012, 2012
202*2012
Smiles2vec: An interpretable general-purpose deep neural network for predicting chemical properties
GB Goh, NO Hodas, C Siegel, A Vishnu
arXiv preprint arXiv:1712.02034, 2017
1762017
Friendship paradox redux: Your friends are more interesting than you
N Hodas, F Kooti, K Lerman
Proceedings of the International AAAI Conference on Web and Social Media 7 …, 2013
1382013
Using rule-based labels for weak supervised learning: a ChemNet for transferable chemical property prediction
GB Goh, C Siegel, A Vishnu, N Hodas
Proceedings of the 24th ACM SIGKDD international conference on knowledge …, 2018
992018
Using social media to predict the future: a systematic literature review
L Phillips, C Dowling, K Shaffer, N Hodas, S Volkova
arXiv preprint arXiv:1706.06134, 2017
992017
Deep Learning to Generate in Silico Chemical Property Libraries and Candidate Molecules for Small Molecule Identification in Complex Samples
SM Colby, JR Nuñez, NO Hodas, CD Corley, RR Renslow
Analytical chemistry 92 (2), 1720-1729, 2019
872019
Asymmetry in RNA pseudoknots: observation and theory
DP Aalberts, NO Hodas
Nucleic acids research 33 (7), 2210-2214, 2005
722005
How much chemistry does a deep neural network need to know to make accurate predictions?
GB Goh, C Siegel, A Vishnu, N Hodas, N Baker
2018 IEEE Winter Conference on Applications of Computer Vision (WACV), 1340-1349, 2018
702018
Deep learning experiments for tropical cyclone intensity forecasts
W Xu, K Balaguru, A August, N Lalo, N Hodas, M DeMaria, D Judi
Weather and Forecasting 36 (4), 1453-1470, 2021
602021
A koopman operator approach for computing and balancing gramians for discrete time nonlinear systems
E Yeung, Z Liu, NO Hodas
2018 Annual American Control Conference (ACC), 337-344, 2018
432018
Metric-based few-shot learning for video action recognition
C Careaga, B Hutchinson, N Hodas, L Phillips
arXiv preprint arXiv:1909.09602, 2019
332019
Disentangling the Lexicons of Disaster Response in Twitter
NO Hodas, G Ver Steeg, J Harrison, S Chikkagoudar, E Bell, CD Corley
Proceedings of the 24th International Conference on World Wide Web, 2015
312015
Shapeshop: Towards understanding deep learning representations via interactive experimentation
F Hohman, N Hodas, DH Chau
Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors …, 2017
292017
Efficient computation of optimal oligo–RNA binding
NO Hodas, DP Aalberts
Nucleic acids research 32 (22), 6636-6642, 2004
282004
O sistema não pode efectuar a operação agora. Tente mais tarde.
Artigos 1–20