Zhengbao Jiang
Cited by
Cited by
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing
P Liu, W Yuan, J Fu, Z Jiang, H Hayashi, G Neubig
ACM Computing Surveys 55 (9), 1-35, 2023
How can we know what language models know?
Z Jiang, FF Xu, J Araki, G Neubig
Transactions of the Association for Computational Linguistics 8, 423-438, 2020
Gptscore: Evaluate as you desire
J Fu, SK Ng, Z Jiang, P Liu
arXiv preprint arXiv:2302.04166, 2023
How Can We Know When Language Models Know? On the Calibration of Language Models for Question Answering
Z Jiang, J Araki, H Ding, G Neubig
Transactions of the Association for Computational Linguistics 9, 962-977, 2021
GSum: A general framework for guided neural abstractive summarization
ZY Dou, P Liu, H Hayashi, Z Jiang, G Neubig
arXiv preprint arXiv:2010.08014, 2020
Active retrieval augmented generation
Z Jiang, FF Xu, L Gao, Z Sun, Q Liu, J Dwivedi-Yu, Y Yang, J Callan, ...
arXiv preprint arXiv:2305.06983, 2023
X-FACTR: Multilingual factual knowledge retrieval from pretrained language models
Z Jiang, A Anastasopoulos, J Araki, H Ding, G Neubig
Proceedings of the 2020 Conference on Empirical Methods in Natural Language …, 2020
Graph-revised convolutional network
D Yu, R Zhang, Z Jiang, Y Wu, Y Yang
Machine Learning and Knowledge Discovery in Databases: European Conference …, 2021
Peer: A collaborative language model
T Schick, J Dwivedi-Yu, Z Jiang, F Petroni, P Lewis, G Izacard, Q You, ...
arXiv preprint arXiv:2208.11663, 2022
Incorporating external knowledge through pre-training for natural language to code generation
FF Xu, Z Jiang, P Yin, B Vasilescu, G Neubig
arXiv preprint arXiv:2004.09015, 2020
Docprompting: Generating code by retrieving the docs
S Zhou, U Alon, FF Xu, Z Wang, Z Jiang, G Neubig
arXiv preprint arXiv:2207.05987, 2022
Personalizing search results using hierarchical RNN with query-aware attention
S Ge, Z Dou, Z Jiang, JY Nie, JR Wen
Proceedings of the 27th ACM international conference on information and …, 2018
Generalizing natural language analysis through span-relation representations
Z Jiang, W Xu, J Araki, G Neubig
arXiv preprint arXiv:1911.03822, 2019
Learning to diversify search results via subtopic attention
Z Jiang, JR Wen, Z Dou, WX Zhao, JY Nie, M Yue
Proceedings of the 40th international ACM SIGIR Conference on Research and …, 2017
Automatically mining facets for queries from their search results
Z Dou, Z Jiang, S Hu, JR Wen, R Song
IEEE Transactions on knowledge and data engineering 28 (2), 385-397, 2015
OmniTab: Pretraining with natural and synthetic data for few-shot table-based question answering
Z Jiang, Y Mao, P He, G Neubig, W Chen
arXiv preprint arXiv:2207.03637, 2022
Learning to filter context for retrieval-augmented generation
Z Wang, J Araki, Z Jiang, MR Parvez, G Neubig
arXiv preprint arXiv:2311.08377, 2023
Retrieval as attention: End-to-end learning of retrieval and reading within a single transformer
Z Jiang, L Gao, J Araki, H Ding, Z Wang, J Callan, G Neubig
arXiv preprint arXiv:2212.02027, 2022
Generating query facets using knowledge bases
Z Jiang, Z Dou, JR Wen
IEEE transactions on knowledge and data engineering 29 (2), 315-329, 2016
Editeval: An instruction-based benchmark for text improvements
J Dwivedi-Yu, T Schick, Z Jiang, M Lomeli, P Lewis, G Izacard, E Grave, ...
arXiv preprint arXiv:2209.13331, 2022
The system can't perform the operation now. Try again later.
Articles 1–20