Follow
Fabian Dablander
Title
Cited by
Cited by
Year
The JASP guidelines for conducting and reporting a Bayesian analysis
J van Doorn, D van den Bergh, U Böhm, F Dablander, K Derks, T Draws, ...
Psychonomic Bulletin & Review 28, 813-826, 2021
6692021
A tutorial on conducting and interpreting a Bayesian ANOVA in JASP
D van den Bergh, J Van Doorn, M Marsman, T Draws, EJ Van Kesteren, ...
L’Année psychologique 120 (1), 73-96, 2020
2312020
Node centrality measures are a poor substitute for causal inference
F Dablander, M Hinne
Scientific reports 9 (1), 6846, 2019
1312019
How to become a Bayesian in eight easy steps: An annotated reading list
A Etz, QF Gronau, F Dablander, PA Edelsbrunner, B Baribault
Psychonomic bulletin & review 25 (1), 219-234, 2018
1312018
The psychometric modeling of scientific reasoning: A review and recommendations for future avenues
PA Edelsbrunner, F Dablander
Educational Psychology Review 31, 1-34, 2019
352019
Anticipating critical transitions in psychological systems using early warning signals: Theoretical and practical considerations.
F Dablander, A Pichler, A Cika, A Bacilieri
Psychological Methods, 2022
342022
The Bayesian Methodology of Sir Harold Jeffreys as a Practical Alternative to the P Value Hypothesis Test
A Ly, A Stefan, J van Doorn, F Dablander, D van den Bergh, A Sarafoglou, ...
Computational Brain & Behavior 3, 153-161, 2020
302020
An introduction to causal inference
F Dablander
PsyArXiv, 2020
302020
The support interval
EJ Wagenmakers, QF Gronau, F Dablander, A Etz
Erkenntnis, 1-13, 2020
292020
A clinical PREMISE for personalized models: Toward a formal integration of case formulations and statistical networks.
J Burger, S Epskamp, DC van der Veen, F Dablander, RA Schoevers, ...
Journal of Psychopathology and Clinical Science 131 (8), 906, 2022
212022
What does the crowd believe? A hierarchical approach to estimating subjective beliefs from empirical data.
M Franke, F Dablander, A Schöller, E Bennett, J Degen, MH Tessler, ...
CogSci, 2016
202016
The sum of all fears: Comparing networks based on symptom sum-scores.
J Haslbeck, O Ryan, F Dablander
Psychological Methods 27 (6), 1061, 2022
162022
Overlapping Time Scales Obscure Early Warning Signals of the Second COVID-19 Wave
F Dablander, H Heesterbeek, D Borsboom, JM Drake
medRxiv, 2021
122021
Bayesian estimation of explained variance in ANOVA designs
M Marsman, L Waldorp, F Dablander, EJ Wagenmakers
Statistica Neerlandica 73 (3), 351-372, 2019
122019
Smart Distance Lab’s art fair, experimental data on social distancing during the COVID-19 pandemic
CC Tanis, NM Leach, SJ Geiger, FH Nauta, F Dablander, F van Harreveld, ...
Scientific Data 8 (1), 179, 2021
112021
From face-to-face to Facebook: Probing the effects of passive consumption on interpersonal attraction
AC Orben, A Mutak, F Dablander, M Hecht, JM Krawiec, N Valkovičová, ...
Frontiers in Psychology 9, 1163, 2018
112018
Promoting physical distancing during COVID-19: a systematic approach to compare behavioral interventions
TF Blanken, CC Tanis, FH Nauta, F Dablander, BJH Zijlstra, RRM Bouten, ...
Scientific Reports 11 (1), 19463, 2021
102021
The science behind the magic? The relation of the Harry Potter “Sorting Hat Quiz” to personality and human values
L Jakob, E Garcia-Garzon, H Jarke, F Dablander
Collabra: Psychology 5 (1), 31, 2019
102019
A breeding pool of ideas: Analyzing interdisciplinary collaborations at the Complex Systems Summer School
J Brown, D Murray, K Furlong, E Coco, F Dablander
Plos One 16 (2), e0246260, 2021
92021
A puzzle of proportions: Two popular Bayesian tests can yield dramatically different conclusions
F Dablander, K Huth, QF Gronau, A Etz, EJ Wagenmakers
Statistics in medicine 41 (8), 1319-1333, 2022
82022
The system can't perform the operation now. Try again later.
Articles 1–20