Follow
David Rügamer
David Rügamer
Other namesDavid Ruegamer, David Rugamer
Professor at LMU Munich, PI at Munich Center for Machine Learning
Verified email at stat.uni-muenchen.de - Homepage
Title
Cited by
Cited by
Year
Conditional model selection in mixed-effects models with caic4
B Säfken, D Rügamer, T Kneib, S Greven
Journal of Statistical Software 99 (8), 1-30, 2021
1092021
Combining graph neural networks and spatio-temporal disease models to improve the prediction of weekly COVID-19 cases in Germany
C Fritz, E Dorigatti, D Rügamer
Scientific Reports 12 (1), 3930, 2022
812022
Giardiosis and other enteropathogenic infections: a study on diarrhoeic calves in Southern Germany
J Gillhuber, D Rügamer, K Pfister, MC Scheuerle
BMC research notes 7, 1-9, 2014
752014
Machine learning versus logistic regression for prognostic modelling in individuals with non-specific neck pain
BXW Liew, FM Kovacs, D Rügamer, A Royuela
European Spine Journal 31 (8), 2082-2091, 2022
652022
Boosting Functional Regression Models with FDboost
S Brockhaus, D Rügamer, S Greven
Journal of Statistical Software 94 (10), 2020
562020
Semi-structured Distributional Regression
D Rügamer, C Kolb, N Klein
The American Statistician, 1-25, 2023
53*2023
Predictors of sudden cardiac death in doberman pinschers with dilated cardiomyopathy
L Klüser, PJ Holler, J Simak, G Tater, P Smets, D Rügamer, H Küchenhoff, ...
Journal of Veterinary Internal Medicine 30 (3), 722-732, 2016
512016
A General Machine Learning Framework for Survival Analysis
A Bender, D Rügamer, F Scheipl, B Bischl
ECML-PKDD 2020, 2020
362020
Interpretable machine learning models for classifying low back pain status using functional physiological variables
BXW Liew, D Rugamer, AM De Nunzio, D Falla
European Spine Journal 29 (8), 1845-1859, 2020
332020
FDboost: Boosting functional regression models
S Brockhaus, D Rügamer, A Stöcker
R package version 0.2-0, URL https://CRAN. R-project. org/package= FDboost, 2016
322016
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
T Papamarkou, M Skoularidou, K Palla, L Aitchison, J Arbel, D Dunson, ...
ICML 2024, 2024
31*2024
Domain Adaptation for Time-Series Classification to Mitigate Covariate Shift
F Ott, D Rügamer, L Heublein, B Bischl, C Mutschler
ACM MM 2022, 2022
302022
Boosting factor-specific functional historical models for the detection of synchronisation in bioelectrical signals
D Rügamer, S Brockhaus, K Gentsch, K Scherer, S Greven
Journal of Royal Statistical Society: Series C, 2016
302016
Semi-Structured Deep Piecewise Exponential Models
P Kopper, S Pölsterl, C Wachinger, B Bischl, A Bender, D Rügamer
AAAI 2020, Spring Symposium on Survival Prediction -- Algorithms, Challenges …, 2020
262020
Deep Conditional Transformation Models
P Baumann, T Hothorn, D Rügamer
ECML-PKDD 2021 12977, 2021
242021
A novel metric of reliability in pressure pain threshold measurement
B Liew, HY Lee, D Rügamer, AM De Nunzio, NR Heneghan, D Falla, ...
Scientific Reports 11 (1), 6944, 2021
222021
Deep Semi-Supervised Learning for Time Series Classification
J Goschenhofer, R Hvingelby, D Rügamer, J Thomas, M Wagner, B Bischl
ICMLA 2021, 2021
222021
DeepPAMM: Deep Piecewise Exponential Additive Mixed Models for Complex Hazard Structures in Survival Analysis
P Kopper, S Wiegrebe, B Bischl, A Bender, D Rügamer
PAKDD 2022, 249-261, 2022
212022
Classifying neck pain status using scalar and functional biomechanical variables–development of a method using functional data boosting
BXW Liew, D Rugamer, A Stocker, AM De Nunzio
Gait & posture 76, 146-150, 2020
212020
cAIC4: Conditional Akaike information criterion for lme4
B Saefken, D Ruegamer, T Kneib, S Greven
R package version 0.3, 2018
212018
The system can't perform the operation now. Try again later.
Articles 1–20