Liquid time-constant networks R Hasani, M Lechner, A Amini, D Rus, R Grosu Proceedings of the AAAI Conference on Artificial Intelligence 35 (9), 7657-7666, 2021 | 235 | 2021 |
Neural circuit policies enabling auditable autonomy M Lechner, R Hasani, A Amini, TA Henzinger, D Rus, R Grosu Nature Machine Intelligence 2 (10), 642-652, 2020 | 234 | 2020 |
OpenWorm: overview and recent advances in integrative biological simulation of Caenorhabditis elegans GP Sarma, CW Lee, T Portegys, V Ghayoomie, T Jacobs, B Alicea, ... Philosophical Transactions of the Royal Society B 373 (1758), 20170382, 2018 | 134 | 2018 |
Mixed-Memory RNNs for Learning Long-term Dependencies in Irregularly Sampled Time Series M Lechner, R Hasani NeurIPS 2022 Memory in Artificial and Real Intelligence workshop, 2022 | 121* | 2022 |
Closed-form continuous-time neural networks R Hasani, M Lechner, A Amini, L Liebenwein, A Ray, M Tschaikowski, ... Nature Machine Intelligence 4 (11), 992-1003, 2022 | 96* | 2022 |
Liquid structural state-space models R Hasani, M Lechner, TH Wang, M Chahine, A Amini, D Rus arXiv preprint arXiv:2209.12951, 2022 | 77 | 2022 |
Efficient dataset distillation using random feature approximation N Loo, R Hasani, A Amini, D Rus Advances in Neural Information Processing Systems 35, 13877-13891, 2022 | 76 | 2022 |
Latent imagination facilitates zero-shot transfer in autonomous racing A Brunnbauer, L Berducci, A Brandstátter, M Lechner, R Hasani, D Rus, ... 2022 international conference on robotics and automation (ICRA), 7513-7520, 2022 | 65* | 2022 |
Barriernet: Differentiable control barrier functions for learning of safe robot control W Xiao, TH Wang, R Hasani, M Chahine, A Amini, X Li, D Rus IEEE Transactions on Robotics 39 (3), 2289-2307, 2023 | 63 | 2023 |
A natural lottery ticket winner: Reinforcement learning with ordinary neural circuits R Hasani, M Lechner, A Amini, D Rus, R Grosu Proceedings of the 2020 International Conference on Machine Learning (ICML …, 2020 | 61* | 2020 |
A generative neural network model for the quality prediction of work in progress products G Wang, A Ledwoch, RM Hasani, R Grosu, A Brintrup Applied Soft Computing 85, 105683, 2019 | 61 | 2019 |
A machine learning suite for machine components’ health-monitoring R Hasani, G Wang, R Grosu Proceedings of the AAAI Conference on Artificial Intelligence 33 (01), 9472-9477, 2019 | 58* | 2019 |
c302: a multiscale framework for modelling the nervous system of Caenorhabditis elegans P Gleeson, D Lung, R Grosu, R Hasani, SD Larson Philosophical Transactions of the Royal Society B: Biological Sciences 373 …, 2018 | 57 | 2018 |
Designing worm-inspired neural networks for interpretable robotic control M Lechner, R Hasani, M Zimmer, TA Henzinger, R Grosu 2019 International Conference on Robotics and Automation (ICRA), 87-94, 2019 | 51 | 2019 |
Causal Navigation by Continuous-time Neural Networks C Vorbach, R Hasani, A Amini, M Lechner, D Rus Advances in Neural Information Processing Systems 34, 2021 | 46 | 2021 |
Plug-and-Play Supervisory Control Using Muscle and Brain Signals for Real-Time Gesture and Error Detection J DelPreto, AF Salazar-Gomez, S Gil, RM Hasani, FH Guenther, D Rus Robotics: Science and Systems (RSS), 2018 | 45 | 2018 |
Adversarial training is not ready for robot learning M Lechner, R Hasani, R Grosu, D Rus, TA Henzinger 2021 IEEE International Conference on Robotics and Automation (ICRA), 4140-4147, 2021 | 39 | 2021 |
Dataset distillation with convexified implicit gradients N Loo, R Hasani, M Lechner, D Rus International Conference on Machine Learning, 22649-22674, 2023 | 35 | 2023 |
On the verification of neural odes with stochastic guarantees S Grunbacher, R Hasani, M Lechner, J Cyranka, SA Smolka, R Grosu Proceedings of the AAAI Conference on Artificial Intelligence 35 (13), 11525 …, 2021 | 34 | 2021 |
Gershgorin loss stabilizes the recurrent neural network compartment of an end-to-end robot learning scheme M Lechner, R Hasani, D Rus, R Grosu 2020 IEEE International Conference on Robotics and Automation (ICRA), 5446-5452, 2020 | 31 | 2020 |