An empirical study on ensemble of segmentation approaches L Nanni, A Lumini, A Loreggia, A Formaggio, D Cuza Signals 3 (2), 341-358, 2022 | 19 | 2022 |
Deep ensembles in bioimage segmentation L Nanni, D Cuza, A Lumini, A Loreggia, S Brahnam arXiv preprint arXiv:2112.12955, 2021 | 12 | 2021 |
Polyp segmentation with deep ensembles and data augmentation L Nanni, D Cuza, A Lumini, A Loreggia, S Brahman Artificial Intelligence and Machine Learning for Healthcare: Vol. 1: Image …, 2022 | 7 | 2022 |
Building Ensemble of Resnet for Dolphin Whistle Detection L Nanni, D Cuza, S Brahnam Applied Sciences 13 (14), 8029, 2023 | 5 | 2023 |
Deep ensembles and data augmentation for semantic segmentation L Nanni, A Lumini, A Loreggia, S Brahnam, D Cuza Diagnostic Biomedical Signal and Image Processing Applications with Deep …, 2023 | 5 | 2023 |
Deep ensembles in bioimage segmentation (2021) L Nanni, D Cuza, A Lumini, A Loreggia, S Brahnam arXiv preprint arXiv:2112.12955, 0 | 5 | |
Deep ensembles in bioimage segmentation. arXiv 2021 L Nanni, D Cuza, A Lumini, A Loreggia, S Brahnam arXiv preprint arXiv:2112.12955, 0 | 5 | |
Data augmentation for deep ensembles in polyp segmentation L Nanni, D Cuza, A Lumini, S Brahnam Computational Intelligence Based Solutions for Vision Systems, 8-1-8-22, 2022 | 3 | 2022 |
Deep Semantic Segmentation in Skin Detection. D Cuza, A Loreggia, A Lumini, L Nanni ESANN, 2022 | 1 | 2022 |
AI-powered Biodiversity Assessment: Species Classification via DNA Barcoding and Deep Learning L Nanni, D Cuza, S Brahnam Preprints, 2024 | | 2024 |
Sample Size for Training and Testing: Segment Anything Models and Supervised Approaches D Cuza, C Fantozzi, L Nanni, D Fusaro, GZ Felipe, S Brahnam Advances in Intelligent Healthcare Delivery and Management: Research Papers …, 2024 | | 2024 |
An Empirical Study on Segmentation Methods with Deep Ensembles and Data Augmentation L Nanni, D Cuza | | |
Creazione di immagini artificiali per la segmentazione semantica negli esami di colonscopia. D CUZA | | |
An Empirical Study on Segmentation Methods with Deep Ensembles and Data Augmentation D CUZA | | |