The IBP compound Dirichlet process and its application to focused topic modeling S Williamson, C Wang, KA Heller, DM Blei Proceedings of the 27th international conference on machine learning (ICML …, 2010 | 205 | 2010 |
Variance reduction in stochastic gradient Langevin dynamics KA Dubey, S J Reddi, SA Williamson, B Poczos, AJ Smola, EP Xing Advances in neural information processing systems 29, 2016 | 103 | 2016 |
Parallel Markov chain Monte Carlo for nonparametric mixture models S Williamson, A Dubey, E Xing International Conference on Machine Learning, 98-106, 2013 | 99 | 2013 |
The influence of 15-week exercise training on dietary patterns among young adults J Joo, SA Williamson, AI Vazquez, JR Fernandez, MS Bray International Journal of Obesity 43 (9), 1681-1690, 2019 | 94 | 2019 |
A nonparametric mixture model for topic modeling over time A Dubey, A Hefny, S Williamson, EP Xing Proceedings of the 2013 SIAM international conference on data mining, 530-538, 2013 | 81 | 2013 |
Nonparametric network models for link prediction SA Williamson Journal of Machine Learning Research 17 (202), 1-21, 2016 | 72 | 2016 |
Statistical models for partial membership KA Heller, S Williamson, Z Ghahramani Proceedings of the 25th International Conference on Machine learning, 392-399, 2008 | 71 | 2008 |
Dependent Indian buffet processes S Williamson, P Orbanz, Z Ghahramani Proceedings of the thirteenth international conference on artificial …, 2010 | 67 | 2010 |
A survey of non-exchangeable priors for Bayesian nonparametric models NJ Foti, SA Williamson IEEE transactions on pattern analysis and machine intelligence 37 (2), 359-371, 2013 | 56 | 2013 |
Scalable Bayesian nonparametric clustering and classification Y Ni, P Müller, M Diesendruck, S Williamson, Y Zhu, Y Ji Journal of Computational and Graphical Statistics 29 (1), 53-65, 2020 | 33 | 2020 |
Federating recommendations using differentially private prototypes M Ribero, J Henderson, S Williamson, H Vikalo Pattern Recognition 129, 108746, 2022 | 32 | 2022 |
Embarrassingly parallel inference for Gaussian processes MM Zhang, SA Williamson Journal of Machine Learning Research 20 (169), 1-26, 2019 | 28 | 2019 |
Importance weighted generative networks M Diesendruck, ER Elenberg, R Sen, GW Cole, S Shakkottai, ... Machine Learning and Knowledge Discovery in Databases: European Conference …, 2020 | 23 | 2020 |
Focused topic models S Williamson, C Wang, K Heller, D Blei NIPS Workshop on Applications for Topic Models: Text and Beyond, 1-4, 2009 | 21 | 2009 |
A unifying representation for a class of dependent random measures N Foti, J Futoma, D Rockmore, S Williamson Artificial Intelligence and Statistics, 20-28, 2013 | 20 | 2013 |
Advanced dietary patterns analysis using sparse latent factor models in young adults J Joo, SA Williamson, AI Vazquez, JR Fernandez, MS Bray The Journal of Nutrition 148 (12), 1984-1992, 2018 | 18 | 2018 |
Dependent nonparametric trees for dynamic hierarchical clustering KA Dubey, Q Ho, SA Williamson, EP Xing Advances in Neural Information Processing Systems 27, 2014 | 16 | 2014 |
Sequential Gaussian processes for online learning of nonstationary functions MM Zhang, B Dumitrascu, SA Williamson, BE Engelhardt IEEE Transactions on Signal Processing 71, 1539-1550, 2023 | 15 | 2023 |
Modeling images using transformed Indian buffet processes Y Hu, K Zhai, S Williamson, J Boyd-Graber International Conference of Machine Learning 8, 2012 | 15 | 2012 |
Probabilistic models for data combination in recommender systems S Williamson, Z Ghahramani NIPS: Learning from Multiple Sources, 2008 | 14 | 2008 |