Follow
Fartash Faghri
Fartash Faghri
Apple ML Research
Verified email at cs.toronto.edu
Title
Cited by
Cited by
Year
VSE++: Improving Visual-Semantic Embeddings with Hard Negatives
F Faghri, DJ Fleet, JR Kiros, S Fidler
British Machine Vision Conference (BMVC), 2018
12152018
Technical report on the cleverhans v2.1.0 adversarial examples library
N Papernot, F Faghri, N Carlini, I Goodfellow, R Feinman, A Kurakin, ...
arXiv preprint arXiv:1610.00768, 2018
866*2018
Adversarial Spheres
J Gilmer, L Metz, F Faghri, SS Schoenholz, M Raghu, M Wattenberg, ...
International Conference on Learning Representations (ICLR), Workshop Track, 2018
391*2018
Adversarial Manipulation of Deep Representations
S Sabour, Y Cao, F Faghri, DJ Fleet
International Conference on Learning Representations (ICLR), 2016
3282016
Adaptive Gradient Quantization for Data-Parallel SGD
F Faghri, I Tabrizian, I Markov, D Alistarh, DM Roy, A Ramezani-Kebrya
Advances in neural information processing systems 33, 3174-3185, 2020
602020
NUQSGD: Provably Communication-efficient Data-parallel SGD via Nonuniform Quantization
A Ramezani-Kebrya, F Faghri, I Markov, V Aksenov, D Alistarh, DM Roy
Journal of Machine Learning Research 22 (114), 1-43, 2021
49*2021
A Study of Gradient Variance in Deep Learning
F Faghri, D Duvenaud, DJ Fleet, J Ba
NeurIPS Workshop on Beyond First Order Methods, Conference on Neural …, 2020
16*2020
Soar: Second-order adversarial regularization
A Ma, F Faghri, N Papernot, A Farahmand
arXiv preprint arXiv:2004.01832, 2020
15*2020
Bridging the Gap Between Adversarial Robustness and Optimization Bias
F Faghri, S Gowal, C Vasconcelos, DJ Fleet, F Pedregosa, N Le Roux
ICLR Workshop on Security and Safety in Machine Learning Systems …, 2021
52021
Graph based semi-supervised human pose estimation: When the output space comes to help
N Pourdamghani, HR Rabiee, F Faghri, MH Rohban
Pattern Recognition Letters 33 (12), 1529-1535, 2012
42012
RangeAugment: Efficient Online Augmentation with Range Learning
S Mehta, S Naderiparizi, F Faghri, M Horton, L Chen, A Farhadi, O Tuzel, ...
arXiv preprint arXiv:2212.10553, 2022
32022
MixTailor: Mixed Gradient Aggregation for Robust Learning Against Tailored Attacks
A Ramezani-Kebrya, I Tabrizian, F Faghri, P Popovski
Transactions on Machine Learning Research (TMLR), 2022
32022
Reinforce Data, Multiply Impact: Improved Model Accuracy and Robustness with Dataset Reinforcement
F Faghri, H Pouransari, S Mehta, M Farajtabar, A Farhadi, M Rastegari, ...
International Conference on Computer Vision (ICCV), 2023
22023
FastFill: Efficient Compatible Model Update
F Jaeckle, F Faghri, A Farhadi, O Tuzel, H Pouransari
International Conference on Learning Representations (ICLR), 2023
12023
APE: Aligning Pretrained Encoders to Quickly Learn Aligned Multimodal Representations
E Rosenfeld, P Nakkiran, H Pouransari, O Tuzel, F Faghri
NeurIPS Workshop Has it Trained Yet?, 2022
12022
MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training
PKA Vasu*, H Pouransari*, F Faghri*, R Vemulapalli, O Tuzel
arXiv preprint arXiv:2311.17049, 2023
2023
TiC-CLIP: Continual Training of CLIP Models
S Garg, M Farajtabar, H Pouransari, R Vemulapalli, S Mehta, O Tuzel, ...
arXiv preprint arXiv:2310.16226, 2023
2023
SAM-CLIP: Merging Vision Foundation Models towards Semantic and Spatial Understanding
H Wang, PKA Vasu, F Faghri, R Vemulapalli, M Farajtabar, S Mehta, ...
arXiv preprint arXiv:2310.15308, 2023
2023
CLIP meets Model Zoo Experts: Pseudo-Supervision for Visual Enhancement
M Salehi, M Farajtabar, M Horton, F Faghri, H Pouransari, R Vemulapalli, ...
arXiv preprint arXiv:2310.14108, 2023
2023
Training Efficiency and Robustness in Deep Learning
F Faghri
University of Toronto (Canada), 2022
2022
The system can't perform the operation now. Try again later.
Articles 1–20