Seguir
Lukas Mehl
Lukas Mehl
Email confirmado em vis.uni-stuttgart.de
Título
Citado por
Citado por
Ano
Spring: A High-Resolution High-Detail Dataset and Benchmark for Scene Flow, Optical Flow and Stereo
L Mehl, J Schmalfuss, A Jahedi, Y Nalivayko, A Bruhn
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023
102023
Multi-scale RAFT: Combining hierarchical concepts for learning-based optical flow estimation
A Jahedi, L Mehl, M Rivinius, A Bruhn
2022 IEEE International Conference on Image Processing (ICIP), 1236-1240, 2022
82022
M-FUSE: Multi-frame fusion for scene flow estimation
L Mehl, A Jahedi, J Schmalfuss, A Bruhn
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2023
52023
An anisotropic selection scheme for variational optical flow methods with order-adaptive regularisation
L Mehl, C Beschle, A Barth, A Bruhn
International Conference on Scale Space and Variational Methods in Computer …, 2021
52021
High resolution multi-scale RAFT (Robust Vision Challenge 2022)
A Jahedi, M Luz, L Mehl, M Rivinius, A Bruhn
arXiv preprint arXiv:2210.16900, 2022
42022
Distracting Downpour: Adversarial Weather Attacks for Motion Estimation
J Schmalfuss, L Mehl, A Bruhn
arXiv preprint arXiv:2305.06716, 2023
22023
Anisotropic selection schemes for order-adaptive variational optical flow methods
L Mehl
22020
Attacking Motion Estimation with Adversarial Snow
J Schmalfuss, L Mehl, A Bruhn
arXiv preprint arXiv:2210.11242, 2022
12022
Replication Data for: An Anisotropic Selection Scheme for Variational Optical Flow Methods with Order-Adaptive Regularisation
L Mehl, C Beschle, A Barth, A Bruhn
DaRUS, 2022
2022
O sistema não pode efectuar a operação agora. Tente mais tarde.
Artigos 1–9