Seguir
Kate Saenko
Título
Citado por
Citado por
Ano
Long-term recurrent convolutional networks for visual recognition and description
J Donahue, L Anne Hendricks, S Guadarrama, M Rohrbach, ...
Proceedings of the IEEE conference on computer vision and pattern …, 2015
64572015
Adversarial discriminative domain adaptation
E Tzeng, J Hoffman, K Saenko, T Darrell
Computer Vision and Pattern Recognition (CVPR), 2017
37892017
Adapting visual category models to new domains
K Saenko, B Kulis, M Fritz, T Darrell
European conference on computer vision, 213-226, 2010
25262010
Cycada: Cycle-consistent adversarial domain adaptation
J Hoffman, E Tzeng, T Park, JY Zhu, P Isola, K Saenko, AA Efros, T Darrell
International Conference on Machine Learning 2018, 2018
23342018
Deep domain confusion: Maximizing for domain invariance
E Tzeng, J Hoffman, N Zhang, K Saenko, T Darrell
arXiv preprint arXiv:1412.3474, 2014
21442014
Deep coral: Correlation alignment for deep domain adaptation
B Sun, K Saenko
European conference on computer vision, 443-450, 2016
19022016
Sequence to sequence-video to text
S Venugopalan, M Rohrbach, J Donahue, R Mooney, T Darrell, K Saenko
Proceedings of the IEEE international conference on computer vision, 4534-4542, 2015
14602015
Return of Frustratingly Easy Domain Adaptation
B Sun, J Feng, K Saenko
AAAI, 2016
14422016
Simultaneous deep transfer across domains and tasks
E Tzeng, J Hoffman, T Darrell, K Saenko
Proceedings of the IEEE international conference on computer vision, 4068-4076, 2015
13002015
Translating videos to natural language using deep recurrent neural networks
S Venugopalan, H Xu, J Donahue, M Rohrbach, R Mooney, K Saenko
NAACL HLT 2015, 2014
10352014
Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering
H Xu, K Saenko
European Conference on Computer Vision (ECCV), 2016
8162016
What you saw is not what you get: Domain adaptation using asymmetric kernel transforms
B Kulis, K Saenko, T Darrell
CVPR 2011, 1785-1792, 2011
8162011
Moment matching for multi-source domain adaptation
X Peng, Q Bai, X Xia, Z Huang, K Saenko, B Wang
Proceedings of the IEEE/CVF international conference on computer vision …, 2019
7922019
R-C3D: Region convolutional 3d network for temporal activity detection
H Xu, A Das, K Saenko
International Conference on Computer Vision (ICCV), 2017
6792017
Rise: Randomized input sampling for explanation of black-box models
V Petsiuk, A Das, K Saenko
arXiv preprint arXiv:1806.07421, 2018
5992018
Learning to reason: End-to-end module networks for visual question answering
R Hu, J Andreas, M Rohrbach, T Darrell, K Saenko
International Conference on Computer Vision (ICCV), 2017
5442017
Natural language object retrieval
R Hu, H Xu, M Rohrbach, J Feng, K Saenko, T Darrell
Proceedings of the IEEE conference on computer vision and pattern …, 2016
5402016
A category-level 3d object dataset: Putting the kinect to work
A Janoch, S Karayev, Y Jia, JT Barron, M Fritz, K Saenko, T Darrell
Consumer Depth Cameras for Computer Vision, 141-165, 2013
5232013
Youtube2text: Recognizing and describing arbitrary activities using semantic hierarchies and zero-shot recognition
S Guadarrama, N Krishnamoorthy, G Malkarnenkar, S Venugopalan, ...
Computer Vision (ICCV), 2013 IEEE International Conference on, 2712-2719, 2013
5142013
Visda: The visual domain adaptation challenge
X Peng, B Usman, N Kaushik, J Hoffman, D Wang, K Saenko
arXiv preprint arXiv:1710.06924, 2017
4202017
O sistema não pode efectuar a operação agora. Tente mais tarde.
Artigos 1–20