Seguir
Frederik Baymler Mathiesen
Frederik Baymler Mathiesen
Delft University of Technology
Email confirmado em baymler.com - Página inicial
Título
Citado por
Citado por
Ano
Safety certification for stochastic systems via neural barrier functions
FB Mathiesen, SC Calvert, L Laurenti
IEEE Control Systems Letters 7, 973-978, 2022
272022
Hyperverlet: A symplectic hypersolver for Hamiltonian systems
FB Mathiesen, B Yang, J Hu
Proceedings of the AAAI Conference on Artificial Intelligence 36 (4), 4575-4582, 2022
72022
Inner approximations of stochastic programs for data-driven stochastic barrier function design
FB Mathiesen, L Romao, SC Calvert, A Abate, L Laurenti
2023 62nd IEEE Conference on Decision and Control (CDC), 3073-3080, 2023
22023
IntervalMDP. jl: Accelerated Value Iteration for Interval Markov Decision Processes
FB Mathiesen, M Lahijanian, L Laurenti
arXiv preprint arXiv:2401.04068, 2024
12024
Simultaneous synthesis and verification of neural control barrier functions through branch-and-bound verification-in-the-loop training
X Wang, L Knoedler, FB Mathiesen, J Alonso-Mora
arXiv preprint arXiv:2311.10438, 2023
12023
Data-Driven Permissible Safe Control with Barrier Certificates
R Mazouz, J Skovbekk, FB Mathiesen, E Frew, L Laurenti, M Lahijanian
arXiv preprint arXiv:2405.00136, 2024
2024
Piecewise Stochastic Barrier Functions
R Mazouz, FB Mathiesen, L Laurenti, M Lahijanian
arXiv preprint arXiv:2404.16986, 2024
2024
A Deep Learning Method for Numerically Solving Initial Value Problems of Hamiltonian Systems
A Madsen, FB Mathiesen
2021
A Flow-Efficient and Legal-by-Construction Real-Time Traffic Signal Control Platform
F Baymler Mathiesen, G Fleeman
arXiv e-prints, arXiv: 2011.00560, 2020
2020
O sistema não pode efectuar a operação agora. Tente mais tarde.
Artigos 1–9