Dave Higdon
Dave Higdon
Verified email at - Homepage
Cited by
Cited by
Bayesian computation and stochastic systems
J Besag, P Green, D Higdon, K Mengersen
Statistical science, 3-41, 1995
Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling
JA Vrugt, CJF ter Braak, CGH Diks, BA Robinson, JM Hyman, D Higdon
International journal of nonlinear sciences and numerical simulation 10 (3 …, 2009
Computer model calibration using high-dimensional output
D Higdon, J Gattiker, B Williams, M Rightley
Journal of the American Statistical Association 103 (482), 570-583, 2008
Combining field data and computer simulations for calibration and prediction
D Higdon, M Kennedy, JC Cavendish, JA Cafeo, RD Ryne
SIAM Journal on Scientific Computing 26 (2), 448-466, 2004
Space and space-time modeling using process convolutions
D Higdon
Quantitative methods for current environmental issues, 37-56, 2002
Handbook of uncertainty quantification
R Ghanem, D Higdon, H Owhadi
Springer, 2017
A process-convolution approach to modelling temperatures in the North Atlantic Ocean
D Higdon
Environmental and Ecological Statistics 5, 173-190, 1998
Non-stationary spatial modeling
D Higdon, J Swall, J Kern
arXiv preprint arXiv:2212.08043, 2022
The coyote universe. I. Precision determination of the nonlinear matter power spectrum
K Heitmann, M White, C Wagner, S Habib, D Higdon
The Astrophysical Journal 715 (1), 104, 2010
The coyote universe. II. Cosmological models and precision emulation of the nonlinear matter power spectrum
K Heitmann, D Higdon, M White, S Habib, BJ Williams, E Lawrence, ...
The Astrophysical Journal 705 (1), 156, 2009
The coyote universe extended: precision emulation of the matter power spectrum
K Heitmann, E Lawrence, J Kwan, S Habib, D Higdon
The Astrophysical Journal 780 (1), 111, 2013
Auxiliary variable methods for Markov chain Monte Carlo with applications
DM Higdon
Journal of the American statistical Association 93 (442), 585-595, 1998
Bayesian analysis of agricultural field experiments
J Besag, D Higdon
Journal of the Royal Statistical Society Series B: Statistical Methodology …, 1999
The coyote universe. III. Simulation suite and precision emulator for the nonlinear matter power spectrum
E Lawrence, K Heitmann, M White, D Higdon, C Wagner, S Habib, ...
The Astrophysical Journal 713 (2), 1322, 2010
Primate species richness is determined by plant productivity: implications for conservation
RF Kay, RH Madden, C Van Schaik, D Higdon
Proceedings of the National Academy of Sciences 94 (24), 13023-13027, 1997
Nonparametric dark energy reconstruction from supernova data
T Holsclaw, U Alam, B Sanso, H Lee, K Heitmann, S Habib, D Higdon
Physical Review Letters 105 (24), 241302, 2010
A Bayesian hierarchical model to predict benthic oxygen demand from organic matter loading in estuaries and coastal zones
ME Borsuk, D Higdon, CA Stow, KH Reckhow
Ecological modelling 143 (3), 165-181, 2001
Variable selection for Gaussian process models in computer experiments
C Linkletter, D Bingham, N Hengartner, D Higdon, KQ Ye
Technometrics 48 (4), 478-490, 2006
Using data-driven agent-based models for forecasting emerging infectious diseases
S Venkatramanan, B Lewis, J Chen, D Higdon, A Vullikanti, M Marathe
Epidemics 22, 43-49, 2018
Forecasting seasonal influenza with a state-space SIR model
D Osthus, KS Hickmann, PC Caragea, D Higdon, SY Del Valle
The annals of applied statistics 11 (1), 202, 2017
The system can't perform the operation now. Try again later.
Articles 1–20