Jianlong Fu
Jianlong Fu
Microsoft Research
Email confirmado em microsoft.com - Página inicial
Título
Citado por
Citado por
Ano
Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition
J Fu, H Zheng, T Mei
Proceedings of the IEEE conference on computer vision and pattern …, 2017
7652017
Learning multi-attention convolutional neural network for fine-grained image recognition
H Zheng, J Fu, T Mei, J Luo
Proceedings of the IEEE international conference on computer vision, 5209-5217, 2017
5352017
Multi-level attention networks for visual question answering
D Yu, J Fu, T Mei, Y Rui
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2017
1962017
The seventh visual object tracking vot2019 challenge results
M Kristan, J Matas, A Leonardis, M Felsberg, R Pflugfelder, ...
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
1662019
Looking for the devil in the details: Learning trilinear attention sampling network for fine-grained image recognition
H Zheng, J Fu, ZJ Zha, J Luo
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019
1622019
Learning pyramid-context encoder network for high-quality image inpainting
Y Zeng, J Fu, H Chao, B Guo
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019
1372019
Learning texture transformer network for image super-resolution
F Yang, H Yang, J Fu, H Lu, B Guo
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
1212020
Show, adapt and tell: Adversarial training of cross-domain image captioner
TH Chen, YH Liao, CY Chuang, WT Hsu, J Fu, M Sun
Proceedings of the IEEE international conference on computer vision, 521-530, 2017
1202017
Da-gan: Instance-level image translation by deep attention generative adversarial networks
S Ma, J Fu, CW Chen, T Mei
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018
1192018
Learning 2d temporal adjacent networks for moment localization with natural language
S Zhang, H Peng, J Fu, J Luo
Proceedings of the AAAI Conference on Artificial Intelligence 34 (07), 12870 …, 2020
732020
Learn to scale: Generating multipolar normalized density maps for crowd counting
C Xu, K Qiu, J Fu, S Bai, Y Xu, X Bai
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
732019
Ocean: Object-aware anchor-free tracking
Z Zhang, H Peng, J Fu, B Li, W Hu
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020
722020
Pixel-bert: Aligning image pixels with text by deep multi-modal transformers
Z Huang, Z Zeng, B Liu, D Fu, J Fu
arXiv preprint arXiv:2004.00849, 2020
682020
Beyond object recognition: Visual sentiment analysis with deep coupled adjective and noun neural networks.
J Wang, J Fu, Y Xu, T Mei
IJCAI, 3484-3490, 2016
672016
Ntire 2020 challenge on real-world image super-resolution: Methods and results
A Lugmayr, M Danelljan, R Timofte
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
632020
Efficient clothing retrieval with semantic-preserving visual phrases
J Fu, J Wang, Z Li, M Xu, H Lu
Asian conference on computer vision, 420-431, 2012
602012
Wsod2: Learning bottom-up and top-down objectness distillation for weakly-supervised object detection
Z Zeng, B Liu, J Fu, H Chao, L Zhang
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
562019
Beyond narrative description: Generating poetry from images by multi-adversarial training
B Liu, J Fu, MP Kato, M Yoshikawa
Proceedings of the 26th ACM international conference on Multimedia, 783-791, 2018
522018
Let your photos talk: Generating narrative paragraph for photo stream via bidirectional attention recurrent neural networks
Y Liu, J Fu, T Mei, CW Chen
Proceedings of the AAAI Conference on Artificial Intelligence 31 (1), 2017
522017
Deep attention neural tensor network for visual question answering
Y Bai, J Fu, T Zhao, T Mei
Proceedings of the European Conference on Computer Vision (ECCV), 20-35, 2018
472018
O sistema não pode efectuar a operação agora. Tente novamente mais tarde.
Artigos 1–20